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Abstract. In this paper we considered several formally determined problems in two 
dimensions. There are no global identifiability results for these problems. However, 
we can recover an important feature of these functions, namely their singularities. 
More precisely, we prove that one can determine the location and strength of 
singularities of an L ~ compactly supported potential by knowing the associated 
scattering amplitude at a fixed energy. Also we prove that one can determine the 
location and strength of the singularities of the sound speed of a medium by 
making measurements just on the boundary of the medium. 

1. Introduction and Statement of the Results 

In this paper we consider formally determined inverse problems in two dimensions. 
These problems involve determination of the sound speed of a medium by making 
measurements at the boundary of the medium or a quantum mechanical potential 
by making scattering measurements away from the support of the potential. 

For  the problems under consideration there are no global identifiability results 
available in the case of a general L ~ potential or sound speed. The results known 
are either local (IS-U, Su I, II]) or generic ([Su-U I]). Kohn and Vogelius ([K-V]) 
proved a global identifiability result in the case that the potential is piecewise 
analytic. In this paper we consider the problem of determining the strength and 
location of the singularities of the sound speed or the potential from either 
boundary measurements or scattering information. 

All the results we prove are reduced to prove a similar result for the inverse 
problem of determining a bounded, measurable potential from the Dirichlet to 
Neumann map associated to the Schr6dinger equation at zero energy. We proceed 
next to define this map. 
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Let f2 ~ ]R 2 be a bounded domain with smooth boundary. Let q ~ L~ 
Assume that 0 is not a Dirichlet eigenvalue of - A  + q. Then Vfe H�89 there is 
a unique solution u e H 1(f2) of the Dirichlet problem 

( - A + q ) u = O  inO,  

The Dirichlet to Neumann map is defined by 

u l a o = f .  (1.1) 

A q ( f )  = O-~v v oca (1.2) 

with u solution of (1.1) and v denotes the unit outer normal to dr2. The inverse 
problem we consider is to determine the injectivity of the map 

A 
q ~ Aq . (1.3) 

It is known that A is locally injective near q = 0 ([S-U]) or q = constant ([Su I]), 
locally injective in an open and dense set of potentials in Wl'~(f2) ([Su-U I]) 
and globally injective on pairs of potentials in an open and dense set in 
Wl '~ ( t2 )x  wl ' |  ([Su-U I]). In [Su-U II] the authors proved that one can 
determine the strength and location of singularities of potentials q having jump 
type singularities across a subdomain of f2 from Aq. In this paper we extend 
this result to determining general L ~ singularities of potentials from Aq. More 
precisely: 

Theorem A. Let  qi ~ L~ f2 ) with 0 not a Dirichlet eigenvalue o f  - A  + q~, i = 1, 2. 
Assume 

A q l  = Aq2 �9 
Then 

q l  - -  q2 ~ C ~ ( ~ )  Vow, 0 < ct < 1 . 

Here C ~ denotes the H61der space of order ~. We first apply Theorem A to the 
inverse scattering problem by a potential at a fixed energy. We describe the 
problem below. The scattering amplitude of a potential q ~ L~ (~x. 2) with compact 
support is defined via the outgoing eigenfunctions. Namely, for 2 E IR - 0, 0, co ~ S ~ 
there exists ~k+(2, x, co) solution of 

satisfying 

( - - A  --[- q - -  ~2)1~+ = 0 (1.4) 

aa(X , O, co)e izlxl 
~' + = e izx'~' + ixl~ + 0(Ixl-~) (1.5) 

x 
with 0 = ~ ] .  The scattering amplitude, aq(2, 0, co) measures the effect of the 

potential q on plane waves of the form e iax~ The inverse scattering problem at 
a fixed energy 2, in two dimensions, is to determine the potential q from the 
scattering amplitude aq(2, 0, co) with 2 fixed and with 0, ~o~ S 1. In this paper we 
prove: 
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Theorem B. Let q l, q2 ~ L~176 with compact support. I f  

aq l (2  , 0, CO) = aq2(2 , 0, CO) 

for all O, co ~ S 1 for a fixed 2, then 

q t - q 2 e C ~ ( N  2) Vet, 0 < e t <  1. 

We now apply Theorem A to an inverse problem arising in geophysics: to 
determine the sound speed of a medium by making measurements at the boundary. 
We formulate more precisely the problem. Let f2 be a bounded region with smooth 
boundary. We denote by c(x)( > 0) the sound speed of the medium f2 and assume 
that c(x) = Co > 0 for x ~ IR z - f2. The scattered pressure field generated by a point 
source at a point Xo s 0f2 is given by the outgoing Green's kernel which satisfies the 
outgoing radiation condition and solves 

22 
Afro(x, Xo, 2) + ~ (#c(x, x0, 2) = - 6 ( x  - Xo). (1.6) 

The inverse problem is to determine c(x) by measuring ffdx, Xo, 2) with x, x0 e 0f2 
and 2 fixed. In this paper we prove: 

Theorem C. Let cl, c2eL~176 cj > O, j = 1, 2, c l (x)  = Cz(X) = Co > 0 for x e  
IR 2 - f2, where Co is a constant. I f  

~, (x ,  Xo, 2) = ~ ( x ,  Xo, 2) 

for x, Xo ~ Of 2 and 2 fixed. Then 

cl -c2~C~(~- .2) ,  Vet, 0 < e t < l .  

The proof of Theorem A uses the special solutions constructed in [S-U]. 
Namely, there are solutions of 

( - A + q ) u = O  in lR 2 

(by extending q = 0 in IR 2 - f2) of the form 

u = eXr + co(x, 0 )  (1.7) 

with ~EIEE,~'~ = 0  and ~k decaying at oo for IGI > K (see Proposition2.1 for 
a more precise statement). 

Then we can define the function Tq considered by Beals and Coifman ([B-C]) 
and Ablowitz and Nachman ([N-A]) in the ~ approach to inverse scattering. 

where 

and 

Tq(k) = ~r(k)  ~ eixkq(x)(1 + CO(X, O)dx , 
12 

, ( ~  / 
( = ~ ( i k + d k ) ,  k = ( k l , k 2 ) ~ ] R  2, J =  - 1  0 '  i = x / - l '  

~K(k)={10 for [kl>=K 
for Ikl < K .  
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The main point is the following result (see Theorem 3.1). 

Theorem D. Let q~L~~ suppq _ ~2. Then 

q - ~ - l r ~ E c a ( Q )  V~, O _ < _ e < l ,  

where o~ denotes the Fourier transform. 

Theorem A then follows from Theorem D and the fact that 

Theorem E. ([Su-U II]) Let qie L~176 as in Theorem A. Extend qi = 0 o n  I R  2 - ~'-~. 
Then 

Aq~ = Aqz 
implies that 

~ = ~ .  

Theorem D suggests a reconstruction method to determine the location and the 
singularities of q from Aq: Using the methods of Nachman ([N]), one can recon- 
struct Tq from A~ and by Theorem D, the singularities of q. 

In Sect. 2 we develop the preliminaries. In Sect. 3 we prove Theorem A, In 
Sect. 4 we reduce the proofs of Theorem B and C to Theorem A. We also state in 
Sect. 4 extensions of the results to other classes of L v potentials. 

2. Preliminaries 

In what follows we use the following notation: 

L ~  = { f e L  ~176 f ~ ~ } ,  

L~ = {f, (1 + [xj2)ZfeLV(~=)}.  

Proposition 2.1. (IS-U]) Let ~ I E  2 with ( ' ~ = 0 .  Let p > l ,  6~IR with 

- 1 < 3 -  1 + 2 < 0 .  Let q e L ~ .  Then there exists a constant K =  
P 

K(O,p,a,l[qllL~(S2)) such that for [~ [>K,  there exists a unique solution of 
( - A  + q)u = 0 in IR 2 of the form 

u(x, 0 = eX<( 1 + co(x, ~)) 
with 

Furthermore, there exists a constant C = C(f2, p, 6, II q ]] L~(~=)) such that 

C 
II co II L~(~)  < --. 

If we choose 

1 (o 
~ = ~ ( i k + J k ) ,  k = ( k l , k 2 ) E l R  2, J =  - 1  

then a straightforward computation shows that 

~(~ + (k2 + ikl))co - qco = q ,  

10), i = x / - 1 ,  

(2.1) 

(2.2) 

(2.3) 
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where 

The above proposition follows directly from the lemma below. 

We shall write 0 (x, k) instead of 0 (x, {) from now on. 

Lemma 2.2. ([S-U]) Le t  q e L ~ ,  feL~+t(lR2), p > 1, 6~IR with - 1  < 6 - 1 
2 

+ -  < 0. Then there exists  a constant  K = k(O,  p, 6, ][qllL~(~2)) such that for  
P 

[kl > K there exists  a unique func t ion  e)(x,  k)sL~(lR 2) satisfying 

~((9 + k 2 + ik l )o)  - qo~ = f  in ]R 2 . (2.4) 

Moreover ,  

C 
1[o9 IIL,r _--< ~ [I f IILL,(~2) ' 

where C = C(6,  p, II q II L~r is a constant.  

The proof of Lemma 2.2 can be done by using an iteration procedure and 
reducing it to a special case q = 0 in (2.4). We write 

o) = ~ o)j (2.5) 
j=O 

{~ -(0 + (k2 + ikl))COo = f  
(2.6) 

~(c3 + (k2 + ikt))o)j+l = qo)j, j > 1 . 
Assuming Lemma 2.2 holds when q = 0, one sees immediately that 

( CIIq]'~]~(R2) ) j+ l 
IlcojllLg(~) --< - -  IlfllLg+~(~=), J > 0 ,  (2.7) 

which shows that ~r converges in L~(IR z) for large Ik[. 
The equation (2.4) with q = 0 can be reduced to {equations. A direct computa- 

tion shows that 

a + e-iXkb 
o, = ( 2 . 8 )  

k2 + ikl  

solves (2.4) with q = 0 if a and b solve the following J equations: 

The following result shows that the equation ~u = f  is unique solvable in the 
space L~(IR2). In what follows we denote by 0- ~ the inverse of ~ in L~(IR2). The 
reference for the next results is the paper by Nirenberg and Walker ([N-W]). 

2 
Proposition 2.3. Le t  p > 1, 6 ~ IR with - 1 < 6 - 1 + - < O. Then 

P 

( ~ -  l f ) ( z )  = -- -~ 
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defines a bounded operator from L~+ 1 to L~. Moreover, the following pointwise 
estimate holds: 

I~-af(z)l < C([zl + 1) -~-~I l f I ILL �9 (2.11) 

If, in addition, f e  L~,  then 

I~- l f (z) l  _-< C(Izl + 1) -1 IITIIL~, (2.12) 

where z = xl + ix2. 

The next result gives properties of the singular integral operator 00-- 1. 

2 
Proposition 2.4. Let p > 1, 6 ~ IR, w i t h  - 1  < 6 - 1 + - < O. Then 

P 

1 f f (~ )  de (2.13) a~- i f (z)  = ~p.v. ~ (~ --z)  2 

defines a bounded operator from L~+ 1 to L~+ 1. If, in addition, f E L ~ ,  then 

[lO~-lfl[L,~) < CHfI[L~, C = C(p).  (2.14) 

Also, the followin9 pointwise estimate holds for laroe I zl: 
C 

IO~-lf(z)l < (1 + Izl) 2 [IfI[L~ �9 (2.15) 

One sees that Propositions 2.3 and 2.4 give unique solutions a and b in L~ in 
(2.9). 

We now turn to the Tq function. Given q ~ L~ ,  we define 

T~(k) = ~r(k)  ~ ei~kq(x)(1 + 09(X, k))dx , (2.16) 
o 

where co is the unique L~ solution to (2.3) and 

~ r ( k ) = { l o  Ikl>Klkl<= K 

with K as in Lemma 2.2. 
The function Tqis the two dimensional analogue of the scattering transform 

considered in the a approach to the inverse scattering problem by Beals and 
Coifman [B-C] and Ablowitz and Nachman [N-A]. An important fact about Tq is 
that knowledge of Aq or the scattering amplitude at the fixed energy determines Tq 
uniquely as a function of k [Su-U II]. Thus, the question of determining the 
discontinuities of q from Aq or from the scattering amplitude at a fixed energy is 
reduced to determining the discontinuities of q from Tq. 

3. Proof of Theorem A 

The proof of Theorem A is reduced to the proof of the following 

Theorem 3.1. Let q e L ~  and let T~ be the function defined in (2.16), then 

q - ~ - l T q l o e C ~ ( O ) ,  0 < a < l ,  

where ~ - 1  denotes the inverse Fourier transform. 

(3.1) 
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Using the expansion (2.5) we may write Tq as 

Tq = ~ K ~ q  + ~ T~ ~) , (3.2) 
j=O 

where T(q J), 0 =< j < oo are function of k given by 

T~J)(k) = ~r (k )  I e'Xkq(x)co.i( x, k)dx , (3.3) 
~2 

where coj is given by (2.6) with f = q. 
Applying the estimate (2.7) to (3.3) yields an estimate for T~ ~), 

C ) +  1 

[ T~i)(k)[ < 0 < j  < ~ (3.4) 
= [k[j+l' = , 

where C = C(~2, II q I[L~(~2)), which implies that 

~-tT~J)eH~-~(IR2) ,  Ve > 0 .  (3.5) 

This result is sufficient to conclude that 

~ - I ( j = ~ z T ~ )  ) ~ )~Ct -~ ( f2 )  V e > 0 .  

However, for T~ ~ and T~ t), (3.5) is too weak, We shall show that ~ - I  T~~ and 
- t T~t) are actually in the C a class with 0 < e < 1. 

P r o p o s i t i o n  3.2. ~-tT(q~ and ~--1Ttqa)lo belongs to Ca(JR 2) for any ~ with 
0 < ~ < 1 .  

Using (3.5) together with Proposition 3.2 we can prove Theorem 3.1. 

Proof of Theorem 3.1. We have 

q -- ~ - X  Tq = q -- ~-Xq~r'~-,Tq + ~ , ~ - l  T(qJ) 
j=O 

= _ ~ - t ( ~ ,  _ 1 ) ~ q  + ~ - t  T~~ + ~ - - t  T~" 

+ ~ ~-~T~J~. 
j = 2  

Since q~K-1 is supported in {Ikl < K } ,  ~ - t ( q ~  x -  1)o~q~C~ Using 
Sobolev's embedding theorem we obtain ~ - t T ~ J ) j  > 2 and thus E~~ ~--~ T~ jl 
belongs to C t -~(IR z) for any e with 0 < e < 1. Therefore, Theorem 3.1 follows from 
Proposition 3.2. [] 

The rest of this section is devoted to the proof of Proposition 3.2. A direct 
computation based on (2.6)-(2.9) yields the explicit formulas for COo and cot given 
below: 

COo = (k2 + i k t ) - t [O-Xq  - e-ixko-t(eixkc3~-tq)] , (3.6) 

COx = (k2 + i k t ) - 2 [ ~ - l ( q ~ - t q )  - t~-t(qe-iXkO-t(eiXkO~-tq))] 

- -  (k 2 + ika)-Ze-ixkc3 - t  [e~Xkt~-t(q~-lq)] 

- -  (k2 + ik t ) -Ee-ixko-X[ei~ko~-t(qe- i~ko-t(e~ko~-tq))]  �9 (3.7) 
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Since o) o and o91 are defined for all k except k = O, we m a y  d rop  the function ~ :  
in (3.3) with j = 0 and  define 

~(qo) = ~ eixk q( x )o%( X, k )dx . 
0 

One sees immediate ly  that  ~ - -  1 T(qO) _ o~-  1 T~0) is a C ~ function. Therefore,  we 
need only to show 

~--1T(1) O~'--l'F(O)~g'~a/]]~2] Va, O < a <  1 (3.8) 

In  the rest of  this section we prove  (3.8). In  what  follows, we denote 
z = xl  + ix2, zeqr ~ = (xl,  x 2 ) e l R  2. We divide the rest of this section into two 
parts.  In  the first pa r t  we prove  (3.8) w i th j  -- 0 and in the second par t  we t reat  the 
case j = 1. 

Part I. Proof of(3.8) wi thj  = O. We first prove  a lemma.  

L e m m a  3.3. There exists a constant C such that 

i f - '  ftqO)(z ) = C .  [ qc~- ' q _ (c~cT- a q)O- l q] , 
Z 

where �9 denotes convolution in IR 2. 

(3.9) 

Proof. F r o m  (3.6) we deduce that  

~ 1 7 6  ] - q  - - k 2  + ikl a 

+ ~  1 " k 2  + ikl a 

Clearly, 

(3.10) 

r  l ~ + ikl a ~ (3.11) 

By (2.10), we have 

eik~( c3c~ - l q)( ~) 
I qO-l(eik~c~c~-lq) dz = -- 1 f q(z) ~ d~dz.  

Since a ~ - l q  ~ LP(]R 2 ) for any p > 1 (one can see this by using (2.14) and (2.15)), 

(c~- lq)(~) d~dz (3,12) 

n ~ eikr oS _ dzd~ 

it follows that, 

is finite. Thus,  by Fubini 's  theorem,  

q3 - 1 ( eiae 3~- 1 q)dz = - - 
Q 

= - S eikr 
~2 

= _ ~ ( ( O ~ - l q ) 3 - 1 q ) .  (3..13) 
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Therefore, 

= - c l , ( ( ~ ? G - l q ) a - X q ) .  (3.14) 
Z 

Combining (3.11) and (3.14) with (3.10) we get (3.9). [] 

Using (2.11) and (2.14) we have that 0 - l q  is bounded and thus 

qg- lq  _ (Og-lq)O-lq~LP(iR2), Vp > 1. 

Combining this with the next lemma we get the desired result. 

Lemma 3.4. Let p o ~ . ,  2 < Po < oo. Letf~LP(lR 2) Vp, 1 < p < Po. Then 1 , f ( z ) ~  
Z 

2 
C~(lR2) for ~ = 1 - -  

PO" 

Proof. Using H61der's inequality and the hypothesis one shows easily that the 
function 

F(z )=  ~ , f ( z ) =  ~2 f(~)~_ ~d~ 

is well defined for each z. Consider 

hf(r 
F(z + h) - F(z) = - ~ ~) d~ . 

ro (z + h -  ~)(z - 

Let 6 be a positive number in (0, 1). Using H61der's inequality we get 

1 

I f (~ + h) F(z)[ < [hi I z -  ~ + hl~+alz- ~1 x+a IITIIL~(~=)" 

Now 

d~ d~ 
~2lz- ~ + hlX+alz- ~11+~ = ~2 [ ~ -  hlX+nl~[ x+n 

, , 

( ' )  , 
= C ~  - 1  = C ~ - I  

Then it follows that 

hF(z + h) - F(z)l < CllfllLq~(m2)lh[ 1 - ~ .  
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This shows that  F~C 1 ~+~(R2), 0 < 6 <  1. Now,  let 1 + 6 _ p o > 2 ,  then 
6 

1 2~ 2 
6 - - -  hence 1 - -  - 1 - - -  concluding the proof.  

Po - 1 '  1 + 6 Po 

Part 11. Proof of(3.8) withj = 1. Using (3.7), we get 

- i T(1) = L~ - -  L 2 - L 3 - L 4 ,  

where Lj is the function of k given below, j = I, 2, 3, 4. 

Ll = .~- ~ [ ( k2 + ik~ )- 2 q~k ~ e'k~ q~- ~ ( qO- ~ q)dx l (3.16) 

L2 = ~g- t[  (k2 q- ikl)-2~r l eikeq~-l(qe-ikeqO-l(eikeOO-lq))dx ] (3.17) 

= + I q -i( ] ,  (318) 
L f~ .3 

k f~ d 
(3.19) 

We shall first show that  

L j e H 2 ( ~ 2 ) ,  j = 1,2, 3 .  (3.20) 

This implies by Sobolev 's  embedding  theorem our  result. Since 4~r (k )=  0 for 
Ikl < K, it follows that  (3.20) is a consequence of the following three results: 

I i (k)  = ~ eikiq~-i(qO-lq)dxeL2(lR2), (3.21) 
o 

I2(k) = S elk~q~-l(qe-ik~o-i(eikia~-iq))dxeL2(N2), (3.22) 

I3 (k) = ~ qO- l(eik~J- l (qff-  i q))dx e L2(IR2) .  (3.23) 
Q 

Since q~-  i q and ~-- ~(q~- 1 q) are bounded  function according to (2.12), one can 
use the same me thod  as the one given in Par t  I to show that  

~ - i ( I i  - I3) = q~-X(q~-tq) + [O~-l(q~-lq)]a-i(qff-lq)~L2(lR2). 

Thus  we need only to prove  (3.22). 
We have 

1 I eik~q(z) I e-~k~q(z)I e~kO(~-lq)(~l)dtl dzdz" I~ = - ~  ~ ~ ~ a~ q -  ~ 

By making  the change of variables in t/: t / ~  t / -  z + r, we get 

1 I q(z) I q(z) ~ eikO(O~--~q)(~_ + z -- z)&ldzd z 
12 = T o  a z - - z ~  ~ q--z" 
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Using Propositions 2.3 and 2.4 one checks easily that we can use Fubini's theorem 
to exchange the order of integrations in 12. Therefore, 

12=-~e ikOI~  q(z) ~ q(z)(&3- 1 o~--Sa z - z  tq)(~/ + z - z ) d z d z  drl. 

Using (2.14) and H61der's inequality we have 

(3.24) 

1 1 

~ q(z)(d~-tq)(rl I ( ( q ( z )  I t' )P(~ )q +z-z)d 'c  < dz [O0-Xql~(n+z-z)d'c 
o ~ - z  = k o l ~ - z  

1 

q(z) PdT, <= ( I i I[ t ~ -  ~ q l[ L'(R:) , (3.25) 
\ o l z  - z  

1 1 
where 1 < p < 2, and - + - = 1. It is easy to see that the right side of (3.25) is 

P q 
uniformly bounded in z and I/which implies that ~ ' - 1 I  2 e L20~(R2). To show that 
~--aI2 eL2(IR 2) and thus I2 e L2(IR2), we use (2.15). Since z, zeO, it follows from 
(2.15) that for It/I large, 

I~ q(z) (O~_lq)(tl z)dzl < + 
o z - z  I =lr/I 2 

I 

for some constant C > 0. Therefore, 

C ~ q(z) dz 1_< C 1~-~ I2(,1)1 < 
r~ - - i  ]ql 2 = lq ]  3 

for large [ r/[, concluding that ~ - -  112 e L 2 (R  z). 
We now prove that heC ' ( /R2) ,  0 < a < 1. Write 

/4 = ~ - -  1((k2 + ikl)-zcrP) , (3.26) 

where 

1 zkz 1 zkz 1 zkz 1 P(k) = ~ @- ( e - ~ -  (qe-"-0- (e" "~0- q)))dz 
Q 

eikf 
= 1 ~ q(z) ~ ~ - l ( q e - i ~ O - l ( e i ~ - l q ) ) ( z ) & d z  

~Z f2 R2"C-- Z 

Since ~-~(qe-ik{a-~(eiU~O-~q))eL p for p > l, we can use Fubini's theorem to 
exchange dz and dr. Hence, 

P(k) = -- 1 ~ e,k~8~_,(qe_,ket ~_ ~(e,ket3~_ l q)) (Z) ~ q(z) dzdz 
nut 2 a z - -  5 

= - S elk~(c~-lq)(z)COC~-l(qe-ik~3-1(elk~gO-lq))(Z) dz" (3.27) 
R 2 

Since ~0-- 1 is a singular integral operator, we cannot use Fubini's theorem. We will 
change variables and integrate by parts. 
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Using integration by parts, we can write 

P(k)  = ~ e*k~ q(z)~-  ~ (qe-*ke t?- ~(e~ke ?~ - ~ q))dz 
R2 

+ (k2 + ikl) ~ e ik~(~-lq)G-l(qe- ik*o-l(e iUc~-Xq))dz  
~2 

= H~ + (k2 + ik~)Fl2. (3.28) 

We can perform integration by parts here because the second integral in (3.27) 
and the two integrals in (3.28) converge in LI(IR2). Also, (3-~q)(z) and 

1 
(~-X(qe-~a~8-1(e~a~8~-Xq)))(z) behave like ~ 5  as [z] tends to oo. (See Proposi- 

tions 2.3 and 2.4.) 
Substituting (3.28) into (3.26) yields 

/4 = f f - l ( ( k 2  + ikl)-2cI)rlI1) + f f - l ( ( k 2  + i k l ) - l ~ a I I 2 )  

= N 1 + N2 . 

We shall prove N~ e C~(IR2), 0 < ~ < 1 by showing that 

(3.29) 

F/~ e L2(IR2). (3.30) 

Using Fubini's theorem, and the change of variables in s: s -* s - z + ~/, we get 

1 ike , , e -ikO q(rl) e eikS['(C~-lq)(s)'~ 
II ,  - - -  ~ 2 ~ qtzj joe r l -  , d~ ~, ~s--q , ] d x d ' &  

1 q(rl) eikSo~-lq(s -- Z + rl)dsdrld z 
0 

=_~1 e i U l a g _ e a  q(Q I q(rl)(a~-'q)(s~l_z -- z + rl)dtldzds. (3.31) 

By making the change of variables t /+  s - z --, t/, we get 

Now applying Fubini's theorem we obtain 

o ~ F 1  f (t)~-lq)_(t/)  I q('r)q(t 1 --_s + "C) dzdrl l .  

Therefore, it suffices to show 

(t)~- lq)(t/) ~ q(z)q(rl -- s + Q dzdrleL2(lR2) " (3.32) 
R2 r/ - - S  O S - - ~  

Since, by (2.12), 

q ( z ) q ( t l -  s + z) & < C 
a s-- 'c  = 1 +[sl  ]] ][2..q..~, 
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and thus, by Propositions (2.3) and (2.4) we conclude 

C 
'~- '~"""'t 'r~'-lt"l)ts)l~(l+ls[)(l+[sl) l+a ' '  ,2 , ~ ,,llqhz~tlOu-lqllz:+,(~) 

C 
(1 + Isl) 2+a [Iqll3~ ' 

where p > 2 ,  1 < 6  1 + 2  - - < 0. This estimate gives (3.32). 
P 

N 2 - i f -  t((k 2 "}- ik l)- l I-12)EC ~~ we need only to consider 

Finally, since 

~-f-i((k2+iki)-ilI2)=C(~*(~r-il-12)(s)). 
By virtue of Lemma 3.4, we need only to show ~ - -  1 M2 E LP(IR 2) for any p > 1. 

As in (3.31), we get 

2 ~ (a~- lq ) (q )  ~ (O- lq ) ( z )q (q  - s + z) 
( ~ ' - ~ / / 2 ) ( s ) = ~  ~ ~ - s  ~ s -  dzd~ . 

By making the change of variables z + q - s ~ z, we obtain 

1 f (O0-1_q)(tl)f q(z)(c~-l_qX T_ + s - rl)dzdrl 
~ ' - 1 ( / 7 2 ) ( s ) = _ 2  ~ . . ~ - - �9 

By (2.12) 

I q)dz C[Iqll2~ S q('c)(0- lq)~v- + s - < sup[(O- lq) (z  + s - n)l 
a ~ - §  = l + [ r / [  ,~a 

C 1 1 q l l ~  CLIqlL~ 
< < - -  
= ( 1  + 1 , 7 1 ) ( 1  + Is  - r t l )  = 1 + Is l  

Thus, by (2.11) 

C I~- -1  (/-/2)(S)] 
(1 + Isl)(1 + Isl) l+n , ,, r ilqllLrll0u-lqllL~.+l(~), 

< 

? 
where - 1  < 6 - 1  + ~ < 0 ,  p ' > 2 .  Then we can set 6 = 0 .  Thus ,.~-1(/][2) 

/ -  
~LP(IR2), Vp > 1, concluding the result. [] 

4. Proofs of  Theorems B and C and Remarks 

This reduction of Theorems B and C to Theorem A is well known in the case n > 2 
([N, St]). The same method of proof  applies in the 2 dimensional case. We indicate 
the main steps here for the purpose of completeness. 

Assume s u p p q i c : B ( O , R )  with R > 0 .  Here B ( O , R ) = { x ~ _ ~ Z , [ x [ < R } .  
We may choose R so that zero is not a Dirichlet eigenvalue for A - qj , j  = 1, 2. 
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The outgoing 
large Ix I: 

x 
with 0 = ~  and 

the large I xl 
the potential 
[A-S]): 

Z. Sun and  G. U h l m a n n  

Green's kernel for - A  + q has the asymptotic expansion for 

ei,Z lxl 
aq(x, xo ,2)  = ixl�89 ~,~(2, Xo , -0 )  + 0(Ix1-3) 

~9q the outgoing eigenfunction. This can be seen by using 

asymptotics of the free outgoing Green's kernel (associated to 
zero) which is given by the Hankel function (see for example 

i 
Go(x, Xo, 4) = ~ H~ol~(lx - Xol2) 

and writing an integral equation for the outgoing Green's kernel in terms of the free 
one (see [St] in the 3 dimensional case). 

Now if aq~(2, 0, co) = aq2(2, 0, co) for a fixed 2 then, 

G q l ( X  , Xo, 4)  - Gq2(x , Xo, 4) = 0(Ixl-r 

and 

( A x  - 22 ) (Gq~(x ,  Xo, 4)  - G~2(x, Xo, 4) )  = O, 

Therefore by Rellich's Lemma we conclude 

Gq~(X, Xo, 2~) = Gq2(x, Xo, 2), 

Ixl, lxol ~ R .  

Ixl, Ixol ~ R. (4.1) 

Define the single layer potential 

Sq, ,z f (x)  = 

Then (4.1) implies that 

j Gq,(x, Xo, 2)f(xo)dSxo �9 
OB(O, R) 

Sq l ,A  ~ Sq2,A �9 

Therefore, by formula (1.40) in [N] (also valid in two dimensions) we get 

Aql_a2 = Aq2_~2 . (4.2) 

Now using Theorem A we conclude Theorem B. 
The reduction of Theorem C to Theorem A follows along the same lines (see 

[N] in the case n > 2). In fact, if we denote 

qj = --2z (1~ C-1~ ) ,  j =  1,2, 

then 

~oj(x, Xo, 4) = Gq~ x, Xo, ~ �9 
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Thus, by the above arguments, the hypothesis of Theorem C implies 

445 

A ,~2 : A ~2. 

(By replacing f2 by a large ball we may  assume that 0 is no t  an eigenvalue for 
~2 

d + 2-~,J = 1, 2 on t2). Theorem C then follows from (4.3) and Theorem A. 
cj  

We remark that the proof given in Sects. 2 and 3 carries over to the case of L p 
potentials. The analog of the exponential growing solutions (2.1) for a L p potential 
in dimension two has been constructed by Ikehata [I]. Using these solutions and 
Lemma 3.4 one can show the following analog of Theorem A which we state 
without  proof. 

Theorem F. L e t  q i~LP(f2) ,  2 < p < oo, wi th  
-- A + qi, i = 1, 2. As sume  

A ql  = Aq2 �9 

Then 

0 not a Dirichlet  eigenvalue o f  

q l  - -  q2 ~ C1 -~(~ '~)  �9 

Analog results to Theorems B and C can also be stated in a similar fashion. 
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